Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Flexibly Mining Better Subgroups (1510.08382v1)

Published 28 Oct 2015 in stat.ML and cs.LG

Abstract: In subgroup discovery, also known as supervised pattern mining, discovering high quality one-dimensional subgroups and refinements of these is a crucial task. For nominal attributes, this is relatively straightforward, as we can consider individual attribute values as binary features. For numerical attributes, the task is more challenging as individual numeric values are not reliable statistics. Instead, we can consider combinations of adjacent values, i.e. bins. Existing binning strategies, however, are not tailored for subgroup discovery. That is, they do not directly optimize for the quality of subgroups, therewith potentially degrading the mining result. To address this issue, we propose FLEXI. In short, with FLEXI we propose to use optimal binning to find high quality binary features for both numeric and ordinal attributes. We instantiate FLEXI with various quality measures and show how to achieve efficiency accordingly. Experiments on both synthetic and real-world data sets show that FLEXI outperforms state of the art with up to 25 times improvement in subgroup quality.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube