Link Prediction with Node Clustering Coefficient (1510.07819v2)
Abstract: Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed CAR (Cannistrai-Alanis-Ravai) index shows the power of local link/triangle information in improving link-prediction accuracy. With the information of level-2 links, which are links between common-neighbors, most classical similarity indices can be improved. Nevertheless, calculating the number of level-2 links makes CAR index not efficient enough. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is because that it employs links existing between neighbors of the common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. Ten real-world networks drawn from five various fields are used to test the performance of our method against to classical similarity indices and recently proposed CAR index. Two estimators: precision and AUP, are used to evaluate the accuracy of link prediction algorithms. Generally speaking, our new index only performs competitively with CAR, but it is a good complement to CAR for networks with not very high LCP-corr, which is a measure to estimate the correlation between number of common-neighbors and number of links between common-neighbors. Besides, the proposed index is also more efficient than CAR index.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.