Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Connectivity of Boolean Satisfiability (1510.06700v1)

Published 22 Oct 2015 in cs.CC and cs.LO

Abstract: For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. For this implicitly defined graph, we here study the st-connectivity and connectivity problems. Building on the work of Gopalan et al. ("The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies", 2006/2009), we first investigate satisfiability problems given by CSPs, more exactly CNF(S)-formulas with constants (as considered in Schaefer's famous 1978 dichotomy theorem); we prove a computational dichotomy for the st-connectivity problem, asserting that it is either solvable in polynomial time or PSPACE-complete, and an aligned structural dichotomy, asserting that the maximal diameter of connected components is either linear in the number of variables, or can be exponential; further, we show a trichotomy for the connectivity problem, asserting that it is either in P, coNP-complete, or PSPACE-complete. Next we investigate two important variants: CNF(S)-formulas without constants, and partially quantified formulas; in both cases, we prove analogous dichotomies for st-connectivity and the diameter; for for the connectivity problem, we show a trichotomy in the case of quantified formulas, while in the case of formulas without constants, we identify fragments of a possible trichotomy. Finally, we consider the connectivity issues for B-formulas, which are arbitrarily nested formulas built from some fixed set B of connectives, and for B-circuits, which are Boolean circuits where the gates are from some finite set B; we prove a common dichotomy for both connectivity problems and the diameter; for partially quantified B-formulas, we show an analogous dichotomy.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.