Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structured Projection-Based Model Reduction with Application to Stochastic Biochemical Networks (1510.05784v1)

Published 20 Oct 2015 in math.OC, cs.SY, and q-bio.QM

Abstract: The Chemical Master Equation (CME) is well known to provide the highest resolution models of a biochemical reaction network. Unfortunately, even simulating the CME can be a challenging task. For this reason more simple approximations to the CME have been proposed. In this work we focus on one such model, the Linear Noise Approximation. Specifically, we consider implications of a recently proposed LNA time-scale separation method. We show that the reduced order LNA converges to the full order model in the mean square sense. Using this as motivation we derive a network structure preserving reduction algorithm based on structured projections. We present convex optimisation algorithms that describe how such projections can be computed and we discuss when structured solutions exits. We also show that for a certain class of systems, structured projections can be found using basic linear algebra and no optimisation is necessary. The algorithms are then applied to a linearised stochastic LNA model of the yeast glycolysis pathway.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.