Papers
Topics
Authors
Recent
2000 character limit reached

Combining intermediate propositional logics with classical logic

Published 19 Oct 2015 in cs.LO | (1510.05326v1)

Abstract: In [17], we introduced a modal logic, called $L$, which combines intuitionistic propositional logic $IPC$ and classical propositional logic $CPC$ and is complete w.r.t. an algebraic semantics. However, $L$ seems to be too weak for Kripke-style semantics. In this paper, we add positive and negative introspection and show that the resulting logic $L5$ has a Kripke semantics. For intermediate logics $I$, we consider the parametrized versions $L5(I)$ of $L5$ where $IPC$ is replaced by $I$. $L5(I)$ can be seen as a classical modal logic for the reasoning about truth in $I$. From our results, we derive a simple method for determining algebraic and Kripke semantics for some specific intermediate logics. We discuss some examples which are of interest for Computer Science, namely the Logic of Here-and-There, G\"odel-Dummett Logic and Jankov Logic. Our method provides new proofs of completeness theorems due to Hosoi, Dummett/Horn and Jankov, respectively.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.