Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improving Back-Propagation by Adding an Adversarial Gradient (1510.04189v2)

Published 14 Oct 2015 in stat.ML and cs.LG

Abstract: The back-propagation algorithm is widely used for learning in artificial neural networks. A challenge in machine learning is to create models that generalize to new data samples not seen in the training data. Recently, a common flaw in several machine learning algorithms was discovered: small perturbations added to the input data lead to consistent misclassification of data samples. Samples that easily mislead the model are called adversarial examples. Training a "maxout" network on adversarial examples has shown to decrease this vulnerability, but also increase classification performance. This paper shows that adversarial training has a regularizing effect also in networks with logistic, hyperbolic tangent and rectified linear units. A simple extension to the back-propagation method is proposed, that adds an adversarial gradient to the training. The extension requires an additional forward and backward pass to calculate a modified input sample, or mini batch, used as input for standard back-propagation learning. The first experimental results on MNIST show that the "adversarial back-propagation" method increases the resistance to adversarial examples and boosts the classification performance. The extension reduces the classification error on the permutation invariant MNIST from 1.60% to 0.95% in a logistic network, and from 1.40% to 0.78% in a network with rectified linear units. Results on CIFAR-10 indicate that the method has a regularizing effect similar to dropout in fully connected networks. Based on these promising results, adversarial back-propagation is proposed as a stand-alone regularizing method that should be further investigated.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.