Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Fine-Grained Product Class Recognition for Assisted Shopping (1510.04074v1)

Published 14 Oct 2015 in cs.CV

Abstract: Assistive solutions for a better shopping experience can improve the quality of life of people, in particular also of visually impaired shoppers. We present a system that visually recognizes the fine-grained product classes of items on a shopping list, in shelves images taken with a smartphone in a grocery store. Our system consists of three components: (a) We automatically recognize useful text on product packaging, e.g., product name and brand, and build a mapping of words to product classes based on the large-scale GroceryProducts dataset. When the user populates the shopping list, we automatically infer the product class of each entered word. (b) We perform fine-grained product class recognition when the user is facing a shelf. We discover discriminative patches on product packaging to differentiate between visually similar product classes and to increase the robustness against continuous changes in product design. (c) We continuously improve the recognition accuracy through active learning. Our experiments show the robustness of the proposed method against cross-domain challenges, and the scalability to an increasing number of products with minimal re-training.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.