The equivalence of the torus and the product of two circles in homotopy type theory (1510.03918v1)
Abstract: Homotopy type theory is a new branch of mathematics which merges insights from abstract homotopy theory and higher category theory with those of logic and type theory. It allows us to represent a variety of mathematical objects as basic type-theoretic constructions, higher inductive types. We present a proof that in homotopy type theory, the torus is equivalent to the product of two circles. This result indicates that the synthetic definition of torus as a higher inductive type is indeed correct.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.