Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Consistent Estimation of Low-Dimensional Latent Structure in High-Dimensional Data (1510.03497v1)

Published 13 Oct 2015 in stat.ML

Abstract: We consider the problem of extracting a low-dimensional, linear latent variable structure from high-dimensional random variables. Specifically, we show that under mild conditions and when this structure manifests itself as a linear space that spans the conditional means, it is possible to consistently recover the structure using only information up to the second moments of these random variables. This finding, specialized to one-parameter exponential families whose variance function is quadratic in their means, allows for the derivation of an explicit estimator of such latent structure. This approach serves as a latent variable model estimator and as a tool for dimension reduction for a high-dimensional matrix of data composed of many related variables. Our theoretical results are verified by simulation studies and an application to genomic data.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.