Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Consistent Estimation of Low-Dimensional Latent Structure in High-Dimensional Data (1510.03497v1)

Published 13 Oct 2015 in stat.ML

Abstract: We consider the problem of extracting a low-dimensional, linear latent variable structure from high-dimensional random variables. Specifically, we show that under mild conditions and when this structure manifests itself as a linear space that spans the conditional means, it is possible to consistently recover the structure using only information up to the second moments of these random variables. This finding, specialized to one-parameter exponential families whose variance function is quadratic in their means, allows for the derivation of an explicit estimator of such latent structure. This approach serves as a latent variable model estimator and as a tool for dimension reduction for a high-dimensional matrix of data composed of many related variables. Our theoretical results are verified by simulation studies and an application to genomic data.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.