Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Robustness of Regularized Pairwise Learning Methods Based on Kernels (1510.03267v1)

Published 12 Oct 2015 in math.ST, math.FA, stat.ML, and stat.TH

Abstract: Regularized empirical risk minimization including support vector machines plays an important role in machine learning theory. In this paper regularized pairwise learning (RPL) methods based on kernels will be investigated. One example is regularized minimization of the error entropy loss which has recently attracted quite some interest from the viewpoint of consistency and learning rates. This paper shows that such RPL methods have additionally good statistical robustness properties, if the loss function and the kernel are chosen appropriately. We treat two cases of particular interest: (i) a bounded and non-convex loss function and (ii) an unbounded convex loss function satisfying a certain Lipschitz type condition.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.