Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast and Accurate Poisson Denoising with Optimized Nonlinear Diffusion (1510.02930v1)

Published 10 Oct 2015 in cs.CV

Abstract: The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this study we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly-developed trainable nonlinear reaction diffusion model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with an optimized nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on GPUs. For images of size $512 \times 512$, our GPU implementation takes less than 0.1 seconds to produce state-of-the-art Poisson denoising performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.