Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Recovering a Hidden Community Beyond the Kesten-Stigum Threshold in $O(|E| \log^*|V|)$ Time (1510.02786v4)

Published 9 Oct 2015 in stat.ML, cs.CC, cs.SI, and math.PR

Abstract: Community detection is considered for a stochastic block model graph of n vertices, with K vertices in the planted community, edge probability p for pairs of vertices both in the community, and edge probability q for other pairs of vertices. The main focus of the paper is on weak recovery of the community based on the graph G, with o(K) misclassified vertices on average, in the sublinear regime $n{1-o(1)} \leq K \leq o(n).$ A critical parameter is the effective signal-to-noise ratio $\lambda=K2(p-q)2/((n-K)q)$, with $\lambda=1$ corresponding to the Kesten-Stigum threshold. We show that a belief propagation algorithm achieves weak recovery if $\lambda>1/e$, beyond the Kesten-Stigum threshold by a factor of $1/e.$ The belief propagation algorithm only needs to run for $\log\ast n+O(1) $ iterations, with the total time complexity $O(|E| \log*n)$, where $\log*n$ is the iterated logarithm of $n.$ Conversely, if $\lambda \leq 1/e$, no local algorithm can asymptotically outperform trivial random guessing. Furthermore, a linear message-passing algorithm that corresponds to applying power iteration to the non-backtracking matrix of the graph is shown to attain weak recovery if and only if $\lambda>1$. In addition, the belief propagation algorithm can be combined with a linear-time voting procedure to achieve the information limit of exact recovery (correctly classify all vertices with high probability) for all $K \ge \frac{n}{\log n} \left( \rho_{\rm BP} +o(1) \right),$ where $\rho_{\rm BP}$ is a function of $p/q$.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.