Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On path decompositions of 2k-regular graphs (1510.02526v1)

Published 8 Oct 2015 in cs.DM and math.CO

Abstract: Tibor Gallai conjectured that the edge set of every connected graph $G$ on $n$ vertices can be partitioned into $\lceil n/2\rceil$ paths. Let $\mathcal{G}{k}$ be the class of all $2k$-regular graphs of girth at least $2k-2$ that admit a pair of disjoint perfect matchings. In this work, we show that Gallai's conjecture holds in $\mathcal{G}{k}$, for every $k \geq 3$. Further, we prove that for every graph $G$ in $\mathcal{G}_{k}$ on $n$ vertices, there exists a partition of its edge set into $n/2$ paths of lengths in ${2k-1,2k,2k+1}$.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube