Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Knowledge Gradient with Logistic Belief Models for Binary Classification (1510.02354v1)

Published 8 Oct 2015 in stat.ML

Abstract: We consider sequential decision making problems for binary classification scenario in which the learner takes an active role in repeatedly selecting samples from the action pool and receives the binary label of the selected alternatives. Our problem is motivated by applications where observations are time consuming and/or expensive, resulting in small samples. The goal is to identify the best alternative with the highest response. We use Bayesian logistic regression to predict the response of each alternative. By formulating the problem as a Markov decision process, we develop a knowledge-gradient type policy to guide the experiment by maximizing the expected value of information of labeling each alternative and provide a finite-time analysis on the estimated error. Experiments on benchmark UCI datasets demonstrate the effectiveness of the proposed method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.