Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On the structure of (banner, odd hole)-free graphs (1510.02324v3)

Published 8 Oct 2015 in math.CO and cs.DM

Abstract: A hole is a chordless cycle with at least four vertices. A hole is odd if it has an odd number of vertices. A banner is a graph which consists of a hole on four vertices and a single vertex with precisely one neighbor on the hole. We prove that a (banner, odd hole)-free graph is perfect, or does not contain a stable set on three vertices, or contains a homogeneous set. Using this structure result, we design a polynomial-time algorithm for recognizing (banner, odd hole)-free graphs. We also design polynomial-time algorithms to find, for such a graph, a minimum coloring and largest stable set. A graph $G$ is perfectly divisible if every induced subgraph $H$ of $G$ contains a set $X$ of vertices such that $X$ meets all largest cliques of $H$, and $X$ induces a perfect graph. The chromatic number of a perfectly divisible graph $G$ is bounded by $\omega2$ where $\omega$ denotes the number of vertices in a largest clique of $G$. We prove that (banner, odd hole)-free graphs are perfect-divisible. %

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)