Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Data compression with low distortion and finite blocklength (1510.02190v4)

Published 8 Oct 2015 in cs.IT and math.IT

Abstract: This paper considers lossy source coding of $n$-dimensional memoryless sources and shows an explicit approximation to the minimum source coding rate required to sustain the probability of exceeding distortion $d$ no greater than $\epsilon$, which is simpler than known dispersion-based approximations. Our approach takes inspiration in the celebrated classical result stating that the Shannon lower bound to rate-distortion function becomes tight in the limit $d \to 0$. We formulate an abstract version of the Shannon lower bound that recovers both the classical Shannon lower bound and the rate-distortion function itself as special cases. Likewise, we show that a nonasymptotic version of the abstract Shannon lower bound recovers all previously known nonasymptotic converses. A necessary and sufficient condition for the Shannon lower bound to be attained exactly is presented. It is demonstrated that whenever that condition is met, the rate-dispersion function is given simply by the varentropy of the source. Remarkably, all finite alphabet sources with balanced distortion measures satisfy that condition in the range of low distortions. Most continuous sources violate that condition. Still, we show that lattice quantizers closely approach the nonasymptotic Shannon lower bound, provided that the source density is smooth enough and the distortion is low. This implies that fine multidimensional lattice coverings are nearly optimal in the rate-distortion sense even at finite $n$. The achievability proof technique is based on a new bound on the output entropy of lattice quantizers in terms of the differential entropy of the source, the lattice cell size and a smoothness parameter of the source density. The technique avoids both the usual random coding argument and the simplifying assumption of the presence of a dither signal.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube