Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming (1510.01597v2)

Published 6 Oct 2015 in math.OC, cs.DM, and cs.SY

Abstract: We devise a scheme for solving an iterative sequence of linear programs (LPs) or second order cone programs (SOCPs) to approximate the optimal value of any semidefinite program (SDP) or sum of squares (SOS) program. The first LP and SOCP-based bounds in the sequence come from the recent work of Ahmadi and Majumdar on diagonally dominant sum of squares (DSOS) and scaled diagonally dominant sum of squares (SDSOS) polynomials. We then iteratively improve on these bounds by pursuing better bases in which more relevant SOS polynomials admit a DSOS or SDSOS representation. Different interpretations of the procedure from primal and dual perspectives are given. While the approach is applicable to SDP relaxations of general polynomial programs, we apply it to two problems of discrete optimization: the maximum independent set problem and the partition problem. We further show that some completely trivial instances of the partition problem lead to strictly positive polynomials on the boundary of the sum of squares cone and hence make the SOS relaxation fail.

Citations (53)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube