Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Centrality metrics and localization in core-periphery networks (1510.01116v2)

Published 5 Oct 2015 in cs.SI and physics.soc-ph

Abstract: Two concepts of centrality have been defined in complex networks. The first considers the centrality of a node and many different metrics for it has been defined (e.g. eigenvector centrality, PageRank, non-backtracking centrality, etc). The second is related to a large scale organization of the network, the core-periphery structure, composed by a dense core plus an outlying and loosely-connected periphery. In this paper we investigate the relation between these two concepts. We consider networks generated via the Stochastic Block Model, or its degree corrected version, with a strong core-periphery structure and we investigate the centrality properties of the core nodes and the ability of several centrality metrics to identify them. We find that the three measures with the best performance are marginals obtained with belief propagation, PageRank, and degree centrality, while non-backtracking and eigenvector centrality (or MINRES}, showed to be equivalent to the latter in the large network limit) perform worse in the investigated networks.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.