Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised diffusion-based LMS for node-specific parameter estimation over wireless sensor networks (1510.00984v1)

Published 4 Oct 2015 in cs.SY

Abstract: We study a distributed node-specific parameter estimation problem where each node in a wireless sensor network is interested in the simultaneous estimation of different vectors of parameters that can be of local interest, of common interest to a subset of nodes, or of global interest to the whole network. We assume a setting where the nodes do not know which other nodes share the same estimation interests. First, we conduct a theoretical analysis on the asymptotic bias that results in case the nodes blindly process all the local estimates of all their neighbors to solve their own node-specific parameter estimation problem. Next, we propose an unsupervised diffusion-based LMS algorithm that allows each node to obtain unbiased estimates of its node-specific vector of parameters by continuously identifying which of the neighboring local estimates correspond to each of its own estimation tasks. Finally, simulation experiments illustrate the efficiency of the proposed strategy.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.