Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stable recovery of low-dimensional cones in Hilbert spaces: One RIP to rule them all (1510.00504v4)

Published 2 Oct 2015 in cs.IT and math.IT

Abstract: Many inverse problems in signal processing deal with the robust estimation of unknown data from underdetermined linear observations. Low dimensional models, when combined with appropriate regularizers, have been shown to be efficient at performing this task. Sparse models with the 1-norm or low rank models with the nuclear norm are examples of such successful combinations. Stable recovery guarantees in these settings have been established using a common tool adapted to each case: the notion of restricted isometry property (RIP). In this paper, we establish generic RIP-based guarantees for the stable recovery of cones (positively homogeneous model sets) with arbitrary regularizers. These guarantees are illustrated on selected examples. For block structured sparsity in the infinite dimensional setting, we use the guarantees for a family of regularizers which efficiency in terms of RIP constant can be controlled, leading to stronger and sharper guarantees than the state of the art.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.