Papers
Topics
Authors
Recent
2000 character limit reached

Generative Adversarial Networks in Estimation of Distribution Algorithms for Combinatorial Optimization (1509.09235v2)

Published 30 Sep 2015 in cs.NE

Abstract: Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Generative Adversarial Networks (GAN) are generative neural networks which can be trained to implicitly model the probability distribution of given data, and it is possible to sample this distribution. We integrate a GAN into an EDA and evaluate the performance of this system when solving combinatorial optimization problems with a single objective. We use several standard benchmark problems and compare the results to state-of-the-art multivariate EDAs. GAN-EDA doe not yield competitive results - the GAN lacks the ability to quickly learn a good approximation of the probability distribution. A key reason seems to be the large amount of noise present in the first EDA generations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.