Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Approximate Spectral Clustering: Efficiency and Guarantees (1509.09188v5)

Published 30 Sep 2015 in cs.DM

Abstract: Approximate Spectral Clustering (ASC) is a popular and successful heuristic for partitioning the nodes of a graph $G$ into clusters for which the ratio of outside connections compared to the volume (sum of degrees) is small. ASC consists of the following two subroutines: i) compute an approximate Spectral Embedding via the Power method; and ii) partition the resulting vector set with an approximate $k$-means clustering algorithm. The resulting $k$-means partition naturally induces a $k$-way node partition of $G$. We give a comprehensive analysis of ASC building on the work of Peng et al.~(SICOMP'17), Boutsidis et al.~(ICML'15) and Ostrovsky et al.~(JACM'13). We show that ASC i) runs efficiently, and ii) yields a good approximation of an optimal $k$-way node partition of $G$. Moreover, we strengthen the quality guarantees of a structural result of Peng et al. by a factor of $k$, and simultaneously weaken the eigenvalue gap assumption. Further, we show that ASC finds a $k$-way node partition of $G$ with the strengthened quality guarantees.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube