Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multilinear objective function-based clustering (1509.08456v1)

Published 26 Sep 2015 in cs.DM

Abstract: The input of most clustering algorithms is a symmetric matrix quantifying similarity within data pairs. Such a matrix is here turned into a quadratic set function measuring cluster score or similarity within data subsets larger than pairs. In general, any set function reasonably assigning a cluster score to data subsets gives rise to an objective function-based clustering problem. When considered in pseudo-Boolean form, cluster score enables to evaluate fuzzy clusters through multilinear extension MLE, while the global score of fuzzy clusterings simply is the sum over constituents fuzzy clusters of their MLE score. This is shown to be no greater than the global score of hard clusterings or partitions of the data set, thereby expanding a known result on extremizers of pseudo-Boolean functions. Yet, a multilinear objective function allows to search for optimality in the interior of the hypercube. The proposed method only requires a fuzzy clustering as initial candidate solution, for the appropriate number of clusters is implicitly extracted from the given data set.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)