Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble UCT Needs High Exploitation (1509.08434v1)

Published 28 Sep 2015 in cs.AI

Abstract: Recent results have shown that the MCTS algorithm (a new, adaptive, randomized optimization algorithm) is effective in a remarkably diverse set of applications in Artificial Intelligence, Operations Research, and High Energy Physics. MCTS can find good solutions without domain dependent heuristics, using the UCT formula to balance exploitation and exploration. It has been suggested that the optimum in the exploitation- exploration balance differs for different search tree sizes: small search trees needs more exploitation; large search trees need more exploration. Small search trees occur in variations of MCTS, such as parallel and ensemble approaches. This paper investigates the possibility of improving the performance of Ensemble UCT by increasing the level of exploitation. As the search trees becomes smaller we achieve an improved performance. The results are important for improving the performance of large scale parallelism of MCTS.

Citations (1)

Summary

We haven't generated a summary for this paper yet.