Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Ensemble UCT Needs High Exploitation (1509.08434v1)

Published 28 Sep 2015 in cs.AI

Abstract: Recent results have shown that the MCTS algorithm (a new, adaptive, randomized optimization algorithm) is effective in a remarkably diverse set of applications in Artificial Intelligence, Operations Research, and High Energy Physics. MCTS can find good solutions without domain dependent heuristics, using the UCT formula to balance exploitation and exploration. It has been suggested that the optimum in the exploitation- exploration balance differs for different search tree sizes: small search trees needs more exploitation; large search trees need more exploration. Small search trees occur in variations of MCTS, such as parallel and ensemble approaches. This paper investigates the possibility of improving the performance of Ensemble UCT by increasing the level of exploitation. As the search trees becomes smaller we achieve an improved performance. The results are important for improving the performance of large scale parallelism of MCTS.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.