Papers
Topics
Authors
Recent
2000 character limit reached

Asynchronous Distributed Optimization via Randomized Dual Proximal Gradient (1509.08373v2)

Published 28 Sep 2015 in cs.SY and math.OC

Abstract: In this paper we consider distributed optimization problems in which the cost function is separable, i.e., a sum of possibly non-smooth functions all sharing a common variable, and can be split into a strongly convex term and a convex one. The second term is typically used to encode constraints or to regularize the solution. We propose a class of distributed optimization algorithms based on proximal gradient methods applied to the dual problem. We show that, by choosing suitable primal variable copies, the dual problem is itself separable when written in terms of conjugate functions, and the dual variables can be stacked into non-overlapping blocks associated to the computing nodes. We first show that a weighted proximal gradient on the dual function leads to a synchronous distributed algorithm with local dual proximal gradient updates at each node. Then, as main paper contribution, we develop asynchronous versions of the algorithm in which the node updates are triggered by local timers without any global iteration counter. The algorithms are shown to be proper randomized block-coordinate proximal gradient updates on the dual function.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.