Learning-Based Modular Indirect Adaptive Control for a Class of Nonlinear Systems (1509.07860v1)
Abstract: We study in this paper the problem of adaptive trajectory tracking control for a class of nonlinear systems with parametric uncertainties. We propose to use a modular approach, where we first design a robust nonlinear state feedback which renders the closed loop input-to-state stable (ISS), where the input is considered to be the estimation error of the uncertain parameters, and the state is considered to be the closed-loop output tracking error. Next, we augment this robust ISS controller with a model-free learning algorithm to estimate the model uncertainties. We implement this method with two different learning approaches. The first one is a model-free multi-parametric extremum seeking (MES) method and the second is a Bayesian optimization-based method called Gaussian Process Upper Confidence Bound (GP-UCB). The combination of the ISS feedback and the learning algorithms gives a learning-based modular indirect adaptive controller. We show the efficiency of this approach on a two-link robot manipulator example.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.