Papers
Topics
Authors
Recent
2000 character limit reached

Online Stochastic Linear Optimization under One-bit Feedback

Published 25 Sep 2015 in cs.LG | (1509.07728v1)

Abstract: In this paper, we study a special bandit setting of online stochastic linear optimization, where only one-bit of information is revealed to the learner at each round. This problem has found many applications including online advertisement and online recommendation. We assume the binary feedback is a random variable generated from the logit model, and aim to minimize the regret defined by the unknown linear function. Although the existing method for generalized linear bandit can be applied to our problem, the high computational cost makes it impractical for real-world problems. To address this challenge, we develop an efficient online learning algorithm by exploiting particular structures of the observation model. Specifically, we adopt online Newton step to estimate the unknown parameter and derive a tight confidence region based on the exponential concavity of the logistic loss. Our analysis shows that the proposed algorithm achieves a regret bound of $O(d\sqrt{T})$, which matches the optimal result of stochastic linear bandits.

Citations (63)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.