Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A new class of rank-metric codes and their list decoding beyond the unique decoding radius (1509.07337v1)

Published 24 Sep 2015 in cs.IT and math.IT

Abstract: Compared with classical block codes, efficient list decoding of rank-metric codes seems more difficult. Although the list decodability of random rank-metric codes and limits to list decodability have been completely determined, little work on efficient list decoding rank-metric codes has been done. The only known efficient list decoding of rank-metric codes $\mC$ gives decoding radius up to the Singleton bound $1-R-\Ge$ with positive rate $R$ when $\rho(\mC)$ is extremely small, i.e., $\Theta(\Ge2)$ , where $\rho(\mC)$ denotes the ratio of the number of rows over the number of columns of $\mC$ \cite[STOC2013]{Guru2013}. It is commonly believed that list decoding of rank-metric codes $\mC$ with not small constant ratio $\rho(\mC)$ is hard. The main purpose of the present paper is to explicitly construct a class of rank-metric codes $\mC$ with not small constant ratio $\rho(\mC)$ and efficiently list decode these codes with decoding radius beyond $(1-R)/2$. Our key idea is to employ two-variable polynomials $f(x,y)$, where $f$ is linearized in variable $x$ and the variable $y$ is used to "fold" the code. In other words, rows are used to correct rank errors and columns are used to "fold" the code to enlarge decoding radius. Apart from the above algebraic technique, we have to prune down the list. The algebraic idea enables us to pin down the messages into a structured subspace of dimension linear in the number $n$ of columns. This "periodic" structure allows us to pre-encoding the messages to prune down the list. More precisely, we use subspace design introduced in \cite[STOC2013]{Guru2013} to get a deterministic algorithm with a larger constant list size and employ hierarchical subspace-evasive sets introduced in \cite[STOC2012]{Guru2012} to obtain a randomized algorithm with a smaller constant list size.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube