Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Noise-Robust ASR for the third 'CHiME' Challenge Exploiting Time-Frequency Masking based Multi-Channel Speech Enhancement and Recurrent Neural Network (1509.07211v1)

Published 24 Sep 2015 in cs.SD and cs.CL

Abstract: In this paper, the Lingban entry to the third 'CHiME' speech separation and recognition challenge is presented. A time-frequency masking based speech enhancement front-end is proposed to suppress the environmental noise utilizing multi-channel coherence and spatial cues. The state-of-the-art speech recognition techniques, namely recurrent neural network based acoustic and LLMing, state space minimum Bayes risk based discriminative acoustic modeling, and i-vector based acoustic condition modeling, are carefully integrated into the speech recognition back-end. To further improve the system performance by fully exploiting the advantages of different technologies, the final recognition results are obtained by lattice combination and rescoring. Evaluations carried out on the official dataset prove the effectiveness of the proposed systems. Comparing with the best baseline result, the proposed system obtains consistent improvements with over 57% relative word error rate reduction on the real-data test set.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)