Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Understand Scene Categories by Objects: A Semantic Regularized Scene Classifier Using Convolutional Neural Networks (1509.06470v1)

Published 22 Sep 2015 in cs.CV

Abstract: Scene classification is a fundamental perception task for environmental understanding in today's robotics. In this paper, we have attempted to exploit the use of popular machine learning technique of deep learning to enhance scene understanding, particularly in robotics applications. As scene images have larger diversity than the iconic object images, it is more challenging for deep learning methods to automatically learn features from scene images with less samples. Inspired by human scene understanding based on object knowledge, we address the problem of scene classification by encouraging deep neural networks to incorporate object-level information. This is implemented with a regularization of semantic segmentation. With only 5 thousand training images, as opposed to 2.5 million images, we show the proposed deep architecture achieves superior scene classification results to the state-of-the-art on a publicly available SUN RGB-D dataset. In addition, performance of semantic segmentation, the regularizer, also reaches a new record with refinement derived from predicted scene labels. Finally, we apply our SUN RGB-D dataset trained model to a mobile robot captured images to classify scenes in our university demonstrating the generalization ability of the proposed algorithm.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.