Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

More Precise Methods for National Research Citation Impact Comparisons (1509.06184v1)

Published 21 Sep 2015 in cs.DL

Abstract: Governments sometimes need to analyse sets of research papers within a field in order to monitor progress, assess the effect of recent policy changes, or identify areas of excellence. They may compare the average citation impacts of the papers by dividing them by the world average for the field and year. Since citation data is highly skewed, however, simple averages may be too imprecise to robustly identify differences within, rather than across, fields. In response, this article introduces two new methods to identify national differences in average citation impact, one based on linear modelling for normalised data and the other using the geometric mean. Results from a sample of 26 Scopus fields between 2009-2015 show that geometric means are the most precise and so are recommended for smaller sample sizes, such as for individual fields. The regression method has the advantage of distinguishing between national contributions to internationally collaborative articles, but has substantially wider confidence intervals than the geometric mean, undermining its value for any except the largest sample sizes.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.