Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fusing Multi-Stream Deep Networks for Video Classification (1509.06086v2)

Published 21 Sep 2015 in cs.CV and cs.MM

Abstract: This paper studies deep network architectures to address the problem of video classification. A multi-stream framework is proposed to fully utilize the rich multimodal information in videos. Specifically, we first train three Convolutional Neural Networks to model spatial, short-term motion and audio clues respectively. Long Short Term Memory networks are then adopted to explore long-term temporal dynamics. With the outputs of the individual streams, we propose a simple and effective fusion method to generate the final predictions, where the optimal fusion weights are learned adaptively for each class, and the learning process is regularized by automatically estimated class relationships. Our contributions are two-fold. First, the proposed multi-stream framework is able to exploit multimodal features that are more comprehensive than those previously attempted. Second, we demonstrate that the adaptive fusion method using the class relationship as a regularizer outperforms traditional alternatives that estimate the weights in a "free" fashion. Our framework produces significantly better results than the state of the arts on two popular benchmarks, 92.2\% on UCF-101 (without using audio) and 84.9\% on Columbia Consumer Videos.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.