Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Convolutional Features for Image Based Retrieval and Scene Categorization (1509.06033v1)

Published 20 Sep 2015 in cs.CV

Abstract: Several recent approaches showed how the representations learned by Convolutional Neural Networks can be repurposed for novel tasks. Most commonly it has been shown that the activation features of the last fully connected layers (fc7 or fc6) of the network, followed by a linear classifier outperform the state-of-the-art on several recognition challenge datasets. Instead of recognition, this paper focuses on the image retrieval problem and proposes a examines alternative pooling strategies derived for CNN features. The presented scheme uses the features maps from an earlier layer 5 of the CNN architecture, which has been shown to preserve coarse spatial information and is semantically meaningful. We examine several pooling strategies and demonstrate superior performance on the image retrieval task (INRIA Holidays) at the fraction of the computational cost, while using a relatively small memory requirements. In addition to retrieval, we see similar efficiency gains on the SUN397 scene categorization dataset, demonstrating wide applicability of this simple strategy. We also introduce and evaluate a novel GeoPlaces5K dataset from different geographical locations in the world for image retrieval that stresses more dramatic changes in appearance and viewpoint.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.