Fast and Efficient Sparse 2D Discrete Fourier Transform using Sparse-Graph Codes (1509.05849v1)
Abstract: We present a novel algorithm, named the 2D-FFAST, to compute a sparse 2D-Discrete Fourier Transform (2D-DFT) featuring both low sample complexity and low computational complexity. The proposed algorithm is based on mixed concepts from signal processing (sub-sampling and aliasing), coding theory (sparse-graph codes) and number theory (Chinese-remainder-theorem) and generalizes the 1D-FFAST 2 algorithm recently proposed by Pawar and Ramchandran [1] to the 2D setting. Concretely, our proposed 2D-FFAST algorithm computes a k-sparse 2D-DFT, with a uniformly random support, of size N = Nx x Ny using O(k) noiseless spatial-domain measurements in O(k log k) computational time. Our results are attractive when the sparsity is sub-linear with respect to the signal dimension, that is, when k -> infinity and k/N -> 0. For the case when the spatial-domain measurements are corrupted by additive noise, our 2D-FFAST framework extends to a noise-robust version in sub-linear time of O(k log4 N ) using O(k log3 N ) measurements. Simulation results, on synthetic images as well as real-world magnetic resonance images, are provided in Section VII and demonstrate the empirical performance of the proposed 2D-FFAST algorithm.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.