Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Colored Non-Crossing Euclidean Steiner Forest (1509.05681v2)

Published 18 Sep 2015 in cs.CG

Abstract: Given a set of $k$-colored points in the plane, we consider the problem of finding $k$ trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For $k=1$, this is the well-known Euclidean Steiner tree problem. For general $k$, a $k\rho$-approximation algorithm is known, where $\rho \le 1.21$ is the Steiner ratio. We present a PTAS for $k=2$, a $(5/3+\varepsilon)$-approximation algorithm for $k=3$, and two approximation algorithms for general~$k$, with ratios $O(\sqrt n \log k)$ and $k+\varepsilon$.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube