Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Colored Non-Crossing Euclidean Steiner Forest (1509.05681v2)

Published 18 Sep 2015 in cs.CG

Abstract: Given a set of $k$-colored points in the plane, we consider the problem of finding $k$ trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For $k=1$, this is the well-known Euclidean Steiner tree problem. For general $k$, a $k\rho$-approximation algorithm is known, where $\rho \le 1.21$ is the Steiner ratio. We present a PTAS for $k=2$, a $(5/3+\varepsilon)$-approximation algorithm for $k=3$, and two approximation algorithms for general~$k$, with ratios $O(\sqrt n \log k)$ and $k+\varepsilon$.

Citations (12)

Summary

We haven't generated a summary for this paper yet.