Papers
Topics
Authors
Recent
2000 character limit reached

Detecting Community Structures in Hi-C Genomic Data (1509.05121v1)

Published 17 Sep 2015 in q-bio.GN, cs.SI, and stat.AP

Abstract: Community detection (CD) algorithms are applied to Hi-C data to discover new communities of loci in the 3D conformation of human and mouse DNA. We find that CD has some distinct advantages over pre-existing methods: (1) it is capable of finding a variable number of communities, (2) it can detect communities of DNA loci either adjacent or distant in the 1D sequence, and (3) it allows us to obtain a principled value of k, the number of communities present. Forcing k = 2, our method recovers earlier findings of Lieberman-Aiden, et al. (2009), but letting k be a parameter, our method obtains as optimal value k = 6, discovering new candidate communities. In addition to discovering large communities that partition entire chromosomes, we also show that CD can detect small-scale topologically associating domains (TADs) such as those found in Dixon, et al. (2012). CD thus provides a natural and flexible statistical framework for understanding the folding structure of DNA at multiple scales in Hi-C data.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.