Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Detecting Community Structures in Hi-C Genomic Data (1509.05121v1)

Published 17 Sep 2015 in q-bio.GN, cs.SI, and stat.AP

Abstract: Community detection (CD) algorithms are applied to Hi-C data to discover new communities of loci in the 3D conformation of human and mouse DNA. We find that CD has some distinct advantages over pre-existing methods: (1) it is capable of finding a variable number of communities, (2) it can detect communities of DNA loci either adjacent or distant in the 1D sequence, and (3) it allows us to obtain a principled value of k, the number of communities present. Forcing k = 2, our method recovers earlier findings of Lieberman-Aiden, et al. (2009), but letting k be a parameter, our method obtains as optimal value k = 6, discovering new candidate communities. In addition to discovering large communities that partition entire chromosomes, we also show that CD can detect small-scale topologically associating domains (TADs) such as those found in Dixon, et al. (2012). CD thus provides a natural and flexible statistical framework for understanding the folding structure of DNA at multiple scales in Hi-C data.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube