Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The effect of randomness for dependency map on the robustness of interdependent lattices (1509.05117v1)

Published 17 Sep 2015 in cs.SI and physics.soc-ph

Abstract: For interdependent networks with identity dependency map, percolation is exactly the same with that on a single network and follows a second-order phase transition, while for random dependency, percolation follows a first-order phase transition. In real networks, the dependency relations between networks are neither identical nor completely random. Thus in this paper, we study the influence of randomness for dependency maps on the robustness of interdependent lattice networks. We introduce approximate entropy($ApEn$) as the measure of randomness of the dependency maps. We find that there is critical $ApEn_c$ below which the percolation is continuous, but for larger $ApEn$, it is a first-order transition. With the increment of $ApEn$, the $p_c$ increases until $ApEn$ reaching ${ApEn}_c'$ and then remains almost constant. The time scale of the system shows rich properties as $ApEn$ increases. Our results uncover that randomness is one of the important factors that lead to cascading failures of spatially interdependent networks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.