Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Kernelized Deep Convolutional Neural Network for Describing Complex Images (1509.04581v1)

Published 15 Sep 2015 in cs.CV, cs.AI, cs.IR, and cs.MM

Abstract: With the impressive capability to capture visual content, deep convolutional neural networks (CNN) have demon- strated promising performance in various vision-based ap- plications, such as classification, recognition, and objec- t detection. However, due to the intrinsic structure design of CNN, for images with complex content, it achieves lim- ited capability on invariance to translation, rotation, and re-sizing changes, which is strongly emphasized in the s- cenario of content-based image retrieval. In this paper, to address this problem, we proposed a new kernelized deep convolutional neural network. We first discuss our motiva- tion by an experimental study to demonstrate the sensitivi- ty of the global CNN feature to the basic geometric trans- formations. Then, we propose to represent visual content with approximate invariance to the above geometric trans- formations from a kernelized perspective. We extract CNN features on the detected object-like patches and aggregate these patch-level CNN features to form a vectorial repre- sentation with the Fisher vector model. The effectiveness of our proposed algorithm is demonstrated on image search application with three benchmark datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)