Papers
Topics
Authors
Recent
2000 character limit reached

Kernelized Deep Convolutional Neural Network for Describing Complex Images (1509.04581v1)

Published 15 Sep 2015 in cs.CV, cs.AI, cs.IR, and cs.MM

Abstract: With the impressive capability to capture visual content, deep convolutional neural networks (CNN) have demon- strated promising performance in various vision-based ap- plications, such as classification, recognition, and objec- t detection. However, due to the intrinsic structure design of CNN, for images with complex content, it achieves lim- ited capability on invariance to translation, rotation, and re-sizing changes, which is strongly emphasized in the s- cenario of content-based image retrieval. In this paper, to address this problem, we proposed a new kernelized deep convolutional neural network. We first discuss our motiva- tion by an experimental study to demonstrate the sensitivi- ty of the global CNN feature to the basic geometric trans- formations. Then, we propose to represent visual content with approximate invariance to the above geometric trans- formations from a kernelized perspective. We extract CNN features on the detected object-like patches and aggregate these patch-level CNN features to form a vectorial repre- sentation with the Fisher vector model. The effectiveness of our proposed algorithm is demonstrated on image search application with three benchmark datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.