Papers
Topics
Authors
Recent
2000 character limit reached

Understanding interdependency through complex information sharing (1509.04555v1)

Published 15 Sep 2015 in cs.IT and math.IT

Abstract: The interactions between three or more random variables are often nontrivial, poorly understood, and yet, are paramount for future advances in fields such as network information theory, neuroscience, genetics and many others. In this work, we propose to analyze these interactions as different modes of information sharing. Towards this end, we introduce a novel axiomatic framework for decomposing the joint entropy, which characterizes the various ways in which random variables can share information. The key contribution of our framework is to distinguish between interdependencies where the information is shared redundantly, and synergistic interdependencies where the sharing structure exists in the whole but not between the parts. We show that our axioms determine unique formulas for all the terms of the proposed decomposition for a number of cases of interest. Moreover, we show how these results can be applied to several network information theory problems, providing a more intuitive understanding of their fundamental limits.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.