Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bandlimited Spatial Field Sampling with Mobile Sensors in the Absence of Location Information (1509.03966v2)

Published 14 Sep 2015 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Sampling of physical fields with mobile sensor is an emerging area. In this context, this work introduces and proposes solutions to a fundamental question: can a spatial field be estimated from samples taken at unknown sampling locations? Unknown sampling location, sample quantization, unknown bandwidth of the field, and presence of measurement-noise present difficulties in the process of field estimation. In this work, except for quantization, the other three issues will be tackled together in a mobile-sampling framework. Spatially bandlimited fields are considered. It is assumed that measurement-noise affected field samples are collected on spatial locations obtained from an unknown renewal process. That is, the samples are obtained on locations obtained from a renewal process, but the sampling locations and the renewal process distribution are unknown. In this unknown sampling location setup, it is shown that the mean-squared error in field estimation decreases as $O(1/n)$ where $n$ is the average number of samples collected by the mobile sensor. The average number of samples collected is determined by the inter-sample spacing distribution in the renewal process. An algorithm to ascertain spatial field's bandwidth is detailed, which works with high probability as the average number of samples $n$ increases. This algorithm works in the same setup, i.e., in the presence of measurement-noise and unknown sampling locations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)