Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bandlimited Spatial Field Sampling with Mobile Sensors in the Absence of Location Information (1509.03966v2)

Published 14 Sep 2015 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Sampling of physical fields with mobile sensor is an emerging area. In this context, this work introduces and proposes solutions to a fundamental question: can a spatial field be estimated from samples taken at unknown sampling locations? Unknown sampling location, sample quantization, unknown bandwidth of the field, and presence of measurement-noise present difficulties in the process of field estimation. In this work, except for quantization, the other three issues will be tackled together in a mobile-sampling framework. Spatially bandlimited fields are considered. It is assumed that measurement-noise affected field samples are collected on spatial locations obtained from an unknown renewal process. That is, the samples are obtained on locations obtained from a renewal process, but the sampling locations and the renewal process distribution are unknown. In this unknown sampling location setup, it is shown that the mean-squared error in field estimation decreases as $O(1/n)$ where $n$ is the average number of samples collected by the mobile sensor. The average number of samples collected is determined by the inter-sample spacing distribution in the renewal process. An algorithm to ascertain spatial field's bandwidth is detailed, which works with high probability as the average number of samples $n$ increases. This algorithm works in the same setup, i.e., in the presence of measurement-noise and unknown sampling locations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube