Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automatic Loop Kernel Analysis and Performance Modeling With Kerncraft (1509.03778v2)

Published 12 Sep 2015 in cs.PF

Abstract: Analytic performance models are essential for understanding the performance characteristics of loop kernels, which consume a major part of CPU cycles in computational science. Starting from a validated performance model one can infer the relevant hardware bottlenecks and promising optimization opportunities. Unfortunately, analytic performance modeling is often tedious even for experienced developers since it requires in-depth knowledge about the hardware and how it interacts with the software. We present the "Kerncraft" tool, which eases the construction of analytic performance models for streaming kernels and stencil loop nests. Starting from the loop source code, the problem size, and a description of the underlying hardware, Kerncraft can ideally predict the single-core performance and scaling behavior of loops on multicore processors using the Roofline or the Execution-Cache-Memory (ECM) model. We describe the operating principles of Kerncraft with its capabilities and limitations, and we show how it may be used to quickly gain insights by accelerated analytic modeling.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.