Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

New Results on the Existence of Open Loop Nash Equilibria in Discrete Time Dynamic Games (1509.03597v1)

Published 11 Sep 2015 in math.OC, cs.GT, and cs.SY

Abstract: We address the problem of finding conditions which guarantee the existence of open-loop Nash equilibria in discrete time dynamic games (DTDGs). The classical approach to DTDGs involves analyzing the problem using optimal control theory which yields results mainly limited to linear-quadratic games. We show the existence of equilibria for a class of DTDGs where the cost function of players admits a quasi-potential function which leads to new results and, in some cases, a generalization of similar results from linear-quadratic games. Our results are obtained by introducing a new formulation for analysing DTDGs using the concept of a conjectured state by the players. In this formulation, the state of the game is modelled as dependent on players. Using this formulation we show that there is an optimisation problem such that the solution of this problem gives an equilibrium of the DTDG. To extend the result for more general games, we modify the DTDG with an additional constraint of consistency of the conjectured state. Any equilibrium of the original game is also an equilibrium of this modified game with consistent conjectures. In the modified game, we show the existence of equilibria for DTDGs where the cost function of players admits a potential function. We end with conditions under which an equilibrium of the game with consistent conjectures is an $\epsilon$-Nash equilibria of the original game.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.