Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A comparative analysis of progressive multiple sequence alignment approaches using UPGMA and neighbor joining based guide trees (1509.03530v1)

Published 11 Sep 2015 in cs.CE and cs.DS

Abstract: Multiple sequence alignment is increasingly important to bioinformatics, with several applications ranging from phylogenetic analyses to domain identification. There are several ways to perform multiple sequence alignment, an important way of which is the progressive alignment approach studied in this work. Progressive alignment involves three steps: find the distance between each pair of sequences; construct a guide tree based on the distance matrix; finally based on the guide tree align sequences using the concept of aligned profiles. Our contribution is in comparing two main methods of guide tree construction in terms of both efficiency and accuracy of the overall alignment: UPGMA and Neighbor Join methods. Our experimental results indicate that the Neighbor Join method is both more efficient in terms of performance and more accurate in terms of overall cost minimization.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.