Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A new Initial Centroid finding Method based on Dissimilarity Tree for K-means Algorithm (1509.03200v1)

Published 19 Jun 2015 in cs.LG

Abstract: Cluster analysis is one of the primary data analysis technique in data mining and K-means is one of the commonly used partitioning clustering algorithm. In K-means algorithm, resulting set of clusters depend on the choice of initial centroids. If we can find initial centroids which are coherent with the arrangement of data, the better set of clusters can be obtained. This paper proposes a method based on the Dissimilarity Tree to find, the better initial centroid as well as every bit more accurate cluster with less computational time. Theory analysis and experimental results indicate that the proposed method can effectively improve the accuracy of clusters and reduce the computational complexity of the K-means algorithm.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.