Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A new Initial Centroid finding Method based on Dissimilarity Tree for K-means Algorithm (1509.03200v1)

Published 19 Jun 2015 in cs.LG

Abstract: Cluster analysis is one of the primary data analysis technique in data mining and K-means is one of the commonly used partitioning clustering algorithm. In K-means algorithm, resulting set of clusters depend on the choice of initial centroids. If we can find initial centroids which are coherent with the arrangement of data, the better set of clusters can be obtained. This paper proposes a method based on the Dissimilarity Tree to find, the better initial centroid as well as every bit more accurate cluster with less computational time. Theory analysis and experimental results indicate that the proposed method can effectively improve the accuracy of clusters and reduce the computational complexity of the K-means algorithm.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.