Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Type-Directed Negation Elimination (1509.03020v1)

Published 10 Sep 2015 in cs.LO and cs.PL

Abstract: In the modal mu-calculus, a formula is well-formed if each recursive variable occurs underneath an even number of negations. By means of De Morgan's laws, it is easy to transform any well-formed formula into an equivalent formula without negations -- its negation normal form. Moreover, if the formula is of size n, its negation normal form of is of the same size O(n). The full modal mu-calculus and the negation normal form fragment are thus equally expressive and concise. In this paper we extend this result to the higher-order modal fixed point logic (HFL), an extension of the modal mu-calculus with higher-order recursive predicate transformers. We present a procedure that converts a formula into an equivalent formula without negations of quadratic size in the worst case and of linear size when the number of variables of the formula is fixed.

Citations (13)

Summary

We haven't generated a summary for this paper yet.