Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exposing Provenance Metadata Using Different RDF Models (1509.02822v1)

Published 9 Sep 2015 in cs.DB and cs.PF

Abstract: A standard model for exposing structured provenance metadata of scientific assertions on the Semantic Web would increase interoperability, discoverability, reliability, as well as reproducibility for scientific discourse and evidence-based knowledge discovery. Several Resource Description Framework (RDF) models have been proposed to track provenance. However, provenance metadata may not only be verbose, but also significantly redundant. Therefore, an appropriate RDF provenance model should be efficient for publishing, querying, and reasoning over Linked Data. In the present work, we have collected millions of pairwise relations between chemicals, genes, and diseases from multiple data sources, and demonstrated the extent of redundancy of provenance information in the life science domain. We also evaluated the suitability of several RDF provenance models for this crowdsourced data set, including the N-ary model, the Singleton Property model, and the Nanopublication model. We examined query performance against three commonly used large RDF stores, including Virtuoso, Stardog, and Blazegraph. Our experiments demonstrate that query performance depends on both RDF store as well as the RDF provenance model.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.