Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the interval of fluctuation of the singular values of random matrices (1509.02322v1)

Published 8 Sep 2015 in math.PR, cs.IT, math.FA, and math.IT

Abstract: Let $A$ be a matrix whose columns $X_1,\dots, X_N$ are independent random vectors in $\mathbb{R}n$. Assume that the tails of the 1-dimensional marginals decay as $\mathbb{P}(|\langle X_i, a\rangle|\geq t)\leq t{-p}$ uniformly in $a\in S{n-1}$ and $i\leq N$. Then for $p>4$ we prove that with high probability $A/{\sqrt{n}}$ has the Restricted Isometry Property (RIP) provided that Euclidean norms $|X_i|$ are concentrated around $\sqrt{n}$. We also show that the covariance matrix is well approximated by the empirical covariance matrix and establish corresponding quantitative estimates on the rate of convergence in terms of the ratio $n/N$. Moreover, we obtain sharp bounds for both problems when the decay is of the type $ \exp({-t{\alpha}})$ with $\alpha \in (0,2]$, extending the known case $\alpha\in[1, 2]$.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.