Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the interval of fluctuation of the singular values of random matrices (1509.02322v1)

Published 8 Sep 2015 in math.PR, cs.IT, math.FA, and math.IT

Abstract: Let $A$ be a matrix whose columns $X_1,\dots, X_N$ are independent random vectors in $\mathbb{R}n$. Assume that the tails of the 1-dimensional marginals decay as $\mathbb{P}(|\langle X_i, a\rangle|\geq t)\leq t{-p}$ uniformly in $a\in S{n-1}$ and $i\leq N$. Then for $p>4$ we prove that with high probability $A/{\sqrt{n}}$ has the Restricted Isometry Property (RIP) provided that Euclidean norms $|X_i|$ are concentrated around $\sqrt{n}$. We also show that the covariance matrix is well approximated by the empirical covariance matrix and establish corresponding quantitative estimates on the rate of convergence in terms of the ratio $n/N$. Moreover, we obtain sharp bounds for both problems when the decay is of the type $ \exp({-t{\alpha}})$ with $\alpha \in (0,2]$, extending the known case $\alpha\in[1, 2]$.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.