Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On collapsed representation of hierarchical Completely Random Measures (1509.01817v2)

Published 6 Sep 2015 in math.ST, cs.LG, and stat.TH

Abstract: The aim of the paper is to provide an exact approach for generating a Poisson process sampled from a hierarchical CRM, without having to instantiate the infinitely many atoms of the random measures. We use completely random measures~(CRM) and hierarchical CRM to define a prior for Poisson processes. We derive the marginal distribution of the resultant point process, when the underlying CRM is marginalized out. Using well known properties unique to Poisson processes, we were able to derive an exact approach for instantiating a Poisson process with a hierarchical CRM prior. Furthermore, we derive Gibbs sampling strategies for hierarchical CRM models based on Chinese restaurant franchise sampling scheme. As an example, we present the sum of generalized gamma process (SGGP), and show its application in topic-modelling. We show that one can determine the power-law behaviour of the topics and words in a Bayesian fashion, by defining a prior on the parameters of SGGP.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.