Linear kernels for outbranching problems in sparse digraphs (1509.01675v1)
Abstract: In the $k$-Leaf Out-Branching and $k$-Internal Out-Branching problems we are given a directed graph $D$ with a designated root $r$ and a nonnegative integer $k$. The question is to determine the existence of an outbranching rooted at $r$ that has at least $k$ leaves, or at least $k$ internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with $O(k2)$ vertices are known on general graphs. In this work we show that $k$-Leaf Out-Branching admits a kernel with $O(k)$ vertices on $\mathcal{H}$-minor-free graphs, for any fixed family of graphs $\mathcal{H}$, whereas $k$-Internal Out-Branching admits a kernel with $O(k)$ vertices on any graph class of bounded expansion.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.