Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Linear kernels for outbranching problems in sparse digraphs (1509.01675v1)

Published 5 Sep 2015 in cs.DS

Abstract: In the $k$-Leaf Out-Branching and $k$-Internal Out-Branching problems we are given a directed graph $D$ with a designated root $r$ and a nonnegative integer $k$. The question is to determine the existence of an outbranching rooted at $r$ that has at least $k$ leaves, or at least $k$ internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with $O(k2)$ vertices are known on general graphs. In this work we show that $k$-Leaf Out-Branching admits a kernel with $O(k)$ vertices on $\mathcal{H}$-minor-free graphs, for any fixed family of graphs $\mathcal{H}$, whereas $k$-Internal Out-Branching admits a kernel with $O(k)$ vertices on any graph class of bounded expansion.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.