Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling-based Causal Inference in Cue Combination and its Neural Implementation (1509.00998v1)

Published 3 Sep 2015 in cs.NE and q-bio.NC

Abstract: Causal inference in cue combination is to decide whether the cues have a single cause or multiple causes. Although the Bayesian causal inference model explains the problem of causal inference in cue combination successfully, how causal inference in cue combination could be implemented by neural circuits, is unclear. The existing method based on calculating log posterior ratio with variable elimination has the problem of being unrealistic and task-specific. In this paper, we take advantages of the special structure of the Bayesian causal inference model and propose a hierarchical inference algorithm based on importance sampling. A simple neural circuit is designed to implement the proposed inference algorithm. Theoretical analyses and experimental results demonstrate that our algorithm converges to the accurate value as the sample size goes to infinite. Moreover, the neural circuit we design can be easily generalized to implement inference for other problems, such as the multi-stimuli cause inference and the same-different judgment.

Citations (10)

Summary

We haven't generated a summary for this paper yet.